Vector $\vec{\bf A}$ has x and y components of -8.70 cm and 15.0 cm, respectively; vector $\vec{\bf B}$ has x and y components of 13.2 cm and -6.60 cm, respectively. If $\vec{\bf A} - \vec{\bf B} + 3\vec{\bf C} = 0$, what are the components of $\vec{\bf C}$?

3b

Consider the three displacement vectors $\vec{\bf A} = (3\hat{\bf i} - 3\hat{\bf j})$ m, $\vec{\bf B} = (\hat{\bf i} - 4\hat{\bf j})$ m, and $\vec{\bf C} = (-2\hat{\bf i} + 5\hat{\bf j})$ m. Use the component method to determine (a) the magnitude and direction of the vector $\vec{\bf D} = \vec{\bf A} + \vec{\bf B} + \vec{\bf C}$ and (b) the magnitude and direction of $\vec{\bf E} = -\vec{\bf A} - \vec{\bf B} + \vec{\bf C}$.

3c

Two vectors \vec{A} and \vec{B} have precisely equal magnitudes. For the magnitude of $\vec{A} + \vec{B}$ to be 100 times larger than the magnitude of $\vec{A} - \vec{B}$, what must be the angle between them?