

eng Sur mo	gths, Surface <u>face area (S) v</u> st important s	Areas, and V vs. Volume (V) ize relationshi	/olumes _– one of the p to biol. desig	Imes one of the biol. design Waste roduced Aaterials				
V	Energy required	Heat needed or produced	Waste produced					
S	Materials acquired	Heat absorbed or dissipated	Materials excreted					
				4				
				4				

Consequences on cylinders:

To think about ...

- 1. Tire walls vs. inflating pressures for bike (~ 700 kPa) and car (~200 kPa)
- 2. Why use () instead of to transport water?
- 3. Xylem (20 µm thick) can withstand 2MPa pressure difference.
- 4. Capillaries have $\sim 1/3$ internal pressure of arteries, but only 1/2000 thick- why don't they explode?

12

Some real numbers	on b	
(mammals)		
Item	Scaling factor	
Surface area	0.65	
Skeletal mass (terrestrial)	1.08	
Skeletal mass (cetaceans)	1.02	
Muscle mass	1.00	
Metabolic rate, minimal	0.75	
Effective lung volume	1.03	
Frequency of breathing	-0.26	
Kidney mass	0.85	
T in an and an	0.87	
Liver mass		

Item	Scaling factor	Muscle	respiration (Lui	<u>ig)</u>		
Surface area	0.65	2 19 04		Item	Scaling factor	
Skeletal mass (cetaceans)	1.08			Surface area	0.65	
Muscle mass Metabolic rate, minimal	0.75	- Last Jh	The fact:	Skeletal mass (terrestrial) Skeletal mass (cetaceans)	1.08	
Effective lung volume Frequency of breathing	1.03 -0.26	and the second second	Metabolic rate	Muscle mass Metabolic rate, minimal	1.00	
Kidney mass	0.85	Le le terre	$\propto { m M}^{0.75}$	Effective lung volume Frequency of breathing	1.03	
Brain mass	0.70	SCIENCE PHOLO LIBRA		Kidney mass	0.85	
				Liver mass Brain mass	0.87	
Muscle force \propto CSA		Consequences?				
Assuming CSA $\propto M^{0.67}$		Small animals are	<u>O2 supply</u> = Eff. Lung Vol. × Breath. Freq. $\propto M^{0.77}$			
Work done by muscle = $F \times d$		stronger	Blood supply = Heart Vol. \times Beat. Freq.			
$\propto \ M^{0.67} \times M^{0.33} \propto M^1$				NA(0.98-0.25) NA(0.73		