- 1.溫度、熱與平衡 (Temperature, Heat and Equilibrium)
- 2.氣體動力論 (The Kinetic Theory of Gases)
- 3.熱力學第一定律 (The First Law of Thermodynamics)
- 4.熱力學第二定律 (The Second Law of Thermodynamics)
- 5.微觀與巨觀的橋樑S=klnW

中興大學物理系孫允武

熱力學

- 1. 溫度、熱與平衡 (Temperature, Heat and Equilibrium)
- 1.1 熱力學第零定律(The Zeroth Law of Thermodynamics) 熱平衡

温度

1.2 溫度計(Thermometer)與溫標(Temperature Scales)

凱氏溫標(絕對溫標)

攝氏與華氏溫標(The Celsius and Fahrenheit Scales) 熱膨脹(Thermal Expansion)現象

- 1.3 非熱平衡與熱流(Nonequilibrium and Heat Flow)
- 1.4 熱的傳播機制(Heat Transfer Mechanisms)

熱的傳導(Conduction)

熱的對流(Convection)

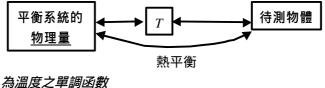
熱的輻射(Radiation)

熱力學第零定律(The Zeroth Law of Thermodynamics)

If bodies A and B are each in thermal equilibrium with a third body T, then they are in thermal equilibrium with each other.

熱平衡(thermal equilibrium):一系統或物體內各部分之某一特定物理量(稱為溫度)均相同時,此系統或物體是處在熱平衡狀態。

所謂熱力學第零定律即:


$$A$$
 T , B T A B

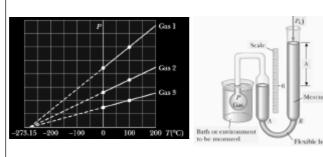
溫度(Temperature):用來描述處在*熱平衡*狀態的物體或系統的一種物理量(T)。

中興大學物理系孫允武

熱力學

溫度計(Thermometer)與溫標(Temperature Scales)

為溫度之單調函數 、有重複性、且易 取得、易測量


溫度測量系統示意圖

凱氏溫標(絕對溫標)

1.利用定體積之理想氣體作溫度計(Constant-Volume Gas Thermometer)

對於理想氣體T=Cp,其中p為氣體壓力,C為一常數 (可由理想氣體方程式T=pV/nR導得)

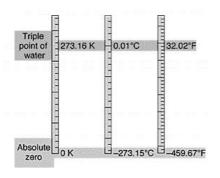
 $p=p_0$ -**r**gh

中興大學物理系孫允武

熱力學

2. 定義水之三相點 $(T_3$, triple-point temperature , 即固液氣三相共存之溫度)為273.16K $T_3=273.16$ K= Cp_3

3.
$$T = T_3 \left(\frac{p}{p_3}\right) = (273.16 \text{K}) \left(\frac{p}{p_3}\right)$$


又希望測量溫度時,溫度計不會影響待測物體或系統,故 溫度計之質量愈小愈好

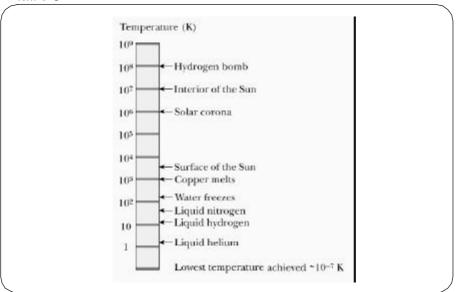
$$T = \lim_{m \to 0} (273.16 \,\mathbf{K}) \left(\frac{p}{p_3}\right)$$

注意:300K讀做"300 kelvins", 並非"300 degrees kelvins"。

中興大學物理系孫允武

攝氏與華氏溫標(The Celsius and Fahrenheit Scales)

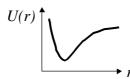
$$T_C = T-273.15$$
 ° $T_F = (9/5)T_C + 32$ °


中興大學物理系孫允武

熱力學

Fixed Point	Temperature (°C)	Temperature (K)	
Triple point of hydrogen	- 259.34	13.81	
Boiling point of helium	- 268.93	4.215	
Boiling point of hydrogen at 33.36 kPa pressure	- 256,108	17.042	
Boiling point of hydrogen	- 252.87	20.28	
Triple point of neon	- 246.048	27.102	
Iriple point of oxygen	- 218.789	54.361	
Boiling point of oxygen	- 182.962	90.188	
Iriple point of water	0.01	273.16	
Boiling point of water	100.00	373.15	
Freezing point of tin	231.968 1	505.118 1	
Freezing point of zinc	419.58	692.73	
Freezing point of silver	961.93	1 235.08	
Freezing point of gold	1 064.43	1 337.58	

All values are from National Bureau of Standards Special Publication 420; U. S. Department of Commerce, May 1975. All values are at standard atmospheric pressure except for triple points and as noted.


中興大學物理系孫允武

中興大學物理系孫允武

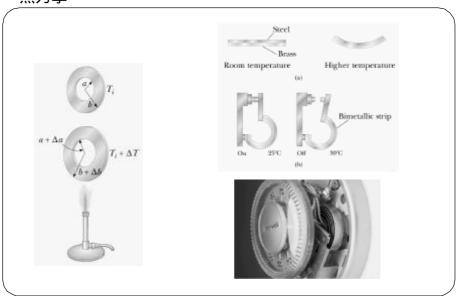
熱力學

熱膨脹現象

由於位能在平衡位置兩側非對稱,溫度改變時,原子間 平均距離便會隨著改變,物體的尺寸因而產生變化。

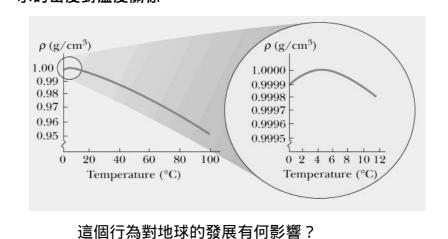
$$a \equiv \frac{\Delta L / L_i}{\Delta T}$$
 Average coefficient of linear expansion
$$\Delta L = aL_i \Delta T$$

$$\Delta L = aL_i \Delta T$$
$$\Delta A = 2aA_i \Delta T$$
$$\Delta V = 3aV_i \Delta T$$


中興大學物理系孫允武

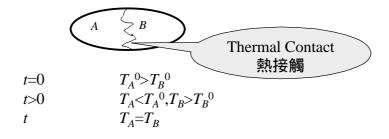
Average Expansion Coefficients for Some Materials Near Room Temperature

Material	Average Linear Expansion Coefficient (α) (°C) ⁻¹	Material	Average Volume Expansion Coefficient (β) (°C) ⁻¹
Aluminum	24×10^{-6}	Alcohol, ethyl	1.12×10^{-4}
Brass and bronze	19×10^{-6}	Benzene	1.24×10^{-4}
Copper	17×10^{-6}	Acetone	1.5×10^{-4}
Glass (ordinary)	9×10^{-6}	Glycerin	4.85×10^{-4}
Glass (Pvrex)	3.2×10^{-6}	Mercury	1.82×10^{-4}
Lead	29×10^{-6}	Turpentine	9.0×10^{-4}
Steel	11×10^{-6}	Gasoline	9.6×10^{-4}
Invar (Ni-Fe allov)	0.9×10^{-6}	Air at 0°C	3.67×10^{-3}
Concrete	12×10^{-6}	Helium	3.665×10^{-3}


中興大學物理系孫允武

熱力學

中興大學物理系孫允武


水的密度對溫度關係

中興大學物理系孫允武

熱力學

非熱平衡與熱流(Nonequilibrium and Heat Flow)

中興大學物理系孫允武

熱的定義:

使1 kg之純水由14.5 升高到15.5 所需要之熱量稱為1仟卡 (kcal) 。

$$Q_{\text{water}} = mc_{\text{water}} \Delta T$$

 c_{water} =1 kcal/kg K 水的比熱(specific heat)

對於其他的物質 $Q=mc\Delta T$

C=mc 熱容(heat capacity)

 $Q = C\dot{\Delta}T$

注意:1.C或c可以是溫度的函數。

2.是不是物質受熱溫度就會升高?

中興大學物理系孫允武

熱力學

			Molar	
	SPECIFIC	HEAT	SPECIFIC HEAT	
SUBSTANCE	cal/g·K	J/kg· K	J/mol·K	
Elemental Solids				
Lead	0.0305	128	26.5	
Tungsten	0.0321	134	24.8	
Silver	0.0564	236	25.5	
Copper	0.0923	386	24.5	
Aluminum	0.215	900	24.4	
Other Solids				
Brass	0.092	380		
Granite	0.19	790		
Glass	0.20	840		
Ice (-10°C)	0.530	2220		
Liquids				
Mercury	0.033	140		
Ethyl alcohol	0.58	2430		
Seawater	0.93	3900		
Water	1.00	4190		

當物質或系統發生相變(phase transition)時,例如冰受熱變成水或水變成水蒸氣,溫度並未改變。這種熱我們稱為潛熱(latent heat)L或轉換熱(heat of transformation),單位是kcal/kg。

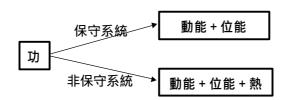
 $Q_{\text{transform}} = L m$

	MELTING		BOILING	
SUBSTANCE	MELTING POINT (K)	HEAT OF FUSION L _F (kJ/kg)	BOILING POINT (K)	HEAT OF VAPORIZATION L _V (kJ/kg)
Hydrogen	14.0	58.0	20.3	455
Oxygen	54.8	13.9	90.2	213
Mercury	234	11.4	630	296
Water	273	333	373	2256
Lead	601	23.2	2017	858
Silver	1235	105	2323	2336
Copper	1356	207	2868	4730

中興大學物理系孫允武

熱力學

熱到底是什麼呢?


前面我們知道熱由高溫區域流向低溫區域、物質受熱可產 生溫度變化或相變化。

Rumford(1790)的鑽砲實驗及Joule(1818-1889)的摩擦生熱實驗說明了功(Work) 可轉換為熱。即

W=JQ

J=4186 J/kcal (焦耳/仟卡)稱為熱功當量 (mechanical equivalent of heat)

故熱流是一種**能量**的流動或轉換 由巨觀之力學能無法表示之能量形式我們稱為內能 (Internal Energy),功或力學能(或其他能量形式)轉化 為內能之部分為熱。

中興大學物理系孫允武

熱力學

熱的傳播機制(Heat Transfer Mechanisms)

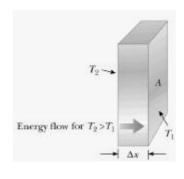
傳導(conduction)、對流(convection)、輻射(radiation)。

熱的傳導(Conduction)

熱藉由接觸的物體由高溫向低溫傳播稱為熱的傳導。

熱的對流(Convection)

熱隨著物質的流動而流動。


熱的輻射(Radiation)

能量藉由光子(電磁輻射)來傳遞。

熱的傳導(Conduction)

$$H = \frac{Q}{\Delta t} = kA \frac{T_2 - T_1}{\Delta x} = kA \frac{\Delta T}{\Delta x}$$

k: thermal conductivity (導熱度) 和材料有關 單位:W/m K

中興大學物理系孫允武

熱力學

SOME THERMAL CONDUCTIVITIES AT ROOM TEMPERATURE

	k(W/m-K)		(W/m-K)
Metals		Building Materials	
Stainless steel	14	Polyurethane foam	0.024
Lead	35	Rock wool	0.043
Aluminum	235	Fiberglass	0.048
Copper	401	White pine	0.11
Silver	428	Window glass	1.0
Gases			
Air (dry)	0.026		
Helium	0.15		
Hydrogen	0.18		

中興大學物理系孫允武

多層傳導物質

$$H = \frac{k_2 A (T_H - T_X)}{L_2} = \frac{k_1 A (T_X - T_L)}{L_1}$$

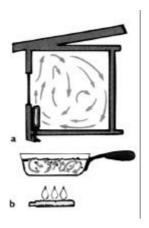
可解得 T_X

$$T_X = \frac{k_1 L_2 T_C + k_2 L_1 T_C}{k_1 L_2 + k_2 L_1}$$
 代入上式得

$$H = \frac{A(T_H - T_L)}{L_1 / k_1 + L_2 / k_2}$$

定義 $L_i/k_i=R_i$ 稱為熱阻(thermal resistance) (單位為何?)

對於多層結構
$$H = \frac{A(T_H - T_L)}{\sum L_i / k_i} = \frac{A(T_H - T_L)}{\sum R_i}$$


中興大學物理系孫允武

熱力學

R Values for Some Common Building Materials

Material	R value (ft²·°F·h/Btu)	
Hardwood siding (1 in. thick)	0.91	
Wood shingles (lapped)	0.87	
Brick (4 in. thick)	4.00	
Concrete block (filled cores)	1.93	
Fiberglass batting (3.5 in. thick)	10.90	
Fiberglass batting (6 in. thick)	18.80	
Fiberglass board (1 in. thick)	4.35	
Cellulose fiber (1 in. thick)	3.70	
Flat glass (0.125 in. thick)	0.89	
Insulating glass (0.25-in. space)	1.54	
Air space (3.5 in. thick)	1.01	
Stagnant air layer	0.17	
Drywall (0.5 in. thick)	0.45	
Sheathing (0.5 in. thick)	1.32	

熱的對流(Convection)

中興大學物理系孫允武

熱力學

熱的輻射(Radiation)

熱輻射(thermal radiation)

有溫度的物體會向外放射光子(photon),即電磁輻射,且光子能量的分布和該物體之溫度有關。

在人體溫度輻射最多的光子在遠紅外線(波常約4~10µm)。

Stefan-Boltzman Law

輻射功率 $P_r = \mathbf{se} A T^4$

A 物體的表面積

ε 表面放射率(emissivity),和表面特性有關

 σ 5.6703 × 10⁻⁸ W/m² K⁴

吸收功率 $P_a = \mathbf{se} A T_{\text{env}}^4$

淨熱輻射交換功率 $P_n = \mathbf{se} A(T_{env}^4 - T^4)$

e=1的物體稱為黑體(black body),通常其表面反射率為零

晚間的輻射冷卻效應

宇宙的背景輻射(大部分的光子分佈在射頻)所決定的溫度 約為3K(地表離與太空尚有大氣層,故不會感覺這麼冷),遠較 地表溫度低許多。晚間沒有太陽的輻射,地表放射能量到黑暗的 天空,溫度降低,尤其是在陸地上晴朗乾燥的夜晚,此效應特別 明顯。