15. With the reference level for potential energy at the ground, we use energy conservation to relate the
maximum height to the initial speed:
K, +U= K + ur,
1;11002 +0=0+ mgh, which gives v,? = 2gh.
Because we assume that the initial speed is constant, with Sriane from Problem 8, we have

gMdlri h Mars = gfhI E' s

Bt = (€, /8, Vi =19.8m/s?)/(3.70m /52)](1.85 m) =

26. We use conservation of energy, with the reference level for potential energy at infinity:
K+ U =K+ U
v 2= GMm/R =0+ 0, which gives
v 2= GMm/[R =(6.67 x 101 N-m? /kg2)(7.35 x 1022 kg)(3800 kg) /(1.74 x 10° m)= [L.O7 x 1019]

31. From Kepler's third law, we have
T2 =4m2R3/GM
=4n2[(3393 + 95) x 10° m|3/[(6.67 x 10~ N -m?/kg?)(6.42 x 1023 kg)], which gives

T=6.25x 10° .c;=

37. For the conservation of angular momentum, we have
L = mv (cos 45°) R = mug, which gives v = (r/R) v/ cos 45°.
For the conservation of enefgy, we have J
K, +U-= Kr+ ur,
1mvz GMm/R = Jmv? GMm,fr
Using the escape speed, given by v, 2 =2GM/R, and the result from angular momentum conservation,
with r = 2R, we get
[(r/R) v/ cos 45° — v 2 =072 — v AR [ 7);
[20,/cos45°P -0, 2 =07 - %v 2 which reduces to

ese !

v =1,2/14= (11 2km/s)?/14, which gives

o=

40. With v, the initial speed, before the firing, the angular momentum is
L,=muv,R,.
In the circular orbit, for Newton’s second law, we have
GMm/R *=mv2/R,, or ©v2=GM/R,.
If the firing does not change the total energy, the speed immediately after firing is still v,, since there
has been no change in the position and thus no change in the potential energy.
The firing changed the direction of the satellite to decrease the angular momentum:
Ly=mwR, cos O = ImuR,.
At apogee and perigee, the ve omty is per nchc:u ar to the radius, so the angular momentum is
L,=mur= %mlel , which gives v = 3(R, /r)v,.
Using the result for v,%, we can write I‘.thi as o> = (GM/4R,)(R, /).
For the conservation of energy, we have
K,y+U, =K+ U;
lmo 2= GMm/R, = imv® - GMm/r,
1GM/R, - GM/R, = {GM/4R)(R,/ r}* = GMm/r, which reduces to
(Ry/rP-8(R,/r+4=0.
When we solve this quadratic equation, we get
R,/r=746 and 0.336, which gives

r=P.134R,, 1.86R



45. For the approximate form, we have

g(h)/g(0) =1 -2k /Ry =1~ 2(10x 105 m)/ (6.37 x 10° m) =[1996860]

For the exact form, we have

g(h)/g(0) = R 2/ (R, + h)? = (6.37 x 10° m)? /[(6.37 + 0.01) x 10° m]> = 1996868}

48. From Example 12-9, the attractive force on a mass m inside the sphere is
F = - GMjgom /12 = = 3nGmpr = - GmMr [ R3.
To lift the mass, we apply a force opposite to this. We integrate to find the work:

Iy K
. R GmM . 1. _ GmM[1rpyr  YRYV] _3CmM
W= M#‘ d:’_LQ G, gy = M [E[R] -E{E)] =2l

_ 31 kg)(6.67 x107" N-m?/kg?)(1 kg)(5.98 = 10* kg)
T8

: = 2.36 = 107 .
6.37 x 10° m

52. (a) From Example 12-9, we have F = —j{nGmpr. Because the density is p= M,r’(%n@}, this becomes
F == (GMm/R*)r.
Because this force is radial, we can use the definition of
potential energy from Section 7-2, with the origin as our
reference point and L(0) = 0:

U = LID) j- F-dr= J. (GMut/R* ¢ dr, which gives
0 Al

U =|GMmr? /2R3, U= 0at r = 0}
(b) In terms of x, the result from part (a} is
U =GMm(x2 + d?) /2R3,
To change our reference level, we can add a constant C and
have U{x=0)=0:
U=GMm(x2+d2) /2R3 + C;
0 =(GMmd? /2R3) + C, which gives C =— GMmd? /2R3, and
U=GMmx? /2R3,  with U=0atx=0]
We could also integrate the component of the force along the tunnel to get the same result.

Tunnel

Earth

63. (a) For a "weightless" circular orbit, the gravitational force provides the centripetal acceleration:
GM/[R? = inGmpR = mvg? /R, or
R? =3uy? [4nGp=3(2.0 m/s)?/ [4n(6.67 x 10~ N-m?/kg?)(5.2 x 10° kg/m?)], which gives

(b) The escape speed is
v, =(Q2GM/R)V2 = 2 = (2.0m/sW2 =
(c) The surface speed at the equator is
v =2nR/ T = 2n(1.66 x 10° m)/[(12 h)(3600 s/h)] = 0.24 m/s.
By walking in the direction of the rotation, he would need a speed of to orbit the asteroid.

65. (a) For a circular orbit, we must have
F=k/r =ma=mv?r, which will be satistied for a speed of v = &/ mr .
[Greular orbits are supported}
{b) The period of the circular motion is
T=2nr/v=2m/fk o™ T, which we write as
[12/r! = 4m2(m | k) = a constant}




70. At the equilibrium point, we have
GMgm [ r? = GM,mfry 2.
When the mass is displaced by x, the two forces become
Fe=GMgn/r?>=GMem/ (s +x2) and
Fy, =GMym/r? =GMm/(r, > +2°),
with the directions indicated on the diagram.
When we add the components along the line joining Earth and the Moon, we get
F| =-Fpcos 8+ F, cos¢p=—CMpmre /(v +22)32 + GM, mr, [ (r, 2+ 22)3 /2
Using the approximation (r2 + x2)" = r2" (1 + mx%/12) with n =— %, we get
F| == (GMan/ )1 = 303 fr2)] + (GMym /1,21 = 322 1)
==GMgm/re2 + GMymi /2 = terminx? = 0, a2 <<s2,
When we add the components perpendicular to the line joining Earth and the Moon, we get
F, =—Fpsin 8- Fy sin ¢= - GMpmx [ (rg2 +x2)3/2 + GMmx [ (2 + 22)3 2
Using the same approximation, we get
F, = (M, Gmx/r3)1 - 3(x2/r2)] - (GMyx /1,31 - 5062 [r, )]
== Gm(Mg/red + (My/rd)x,  x2 <<,
The net force has magnitude
F . =|Gn(M; /re® + My, /r,)x, with a direction toward the original equilibrium point




