Platinum-RTD-based circuit provides high performance with few components

Jordan Dimitrov, Toronto, ON, Canada

The standard way of using an RTD (resistance-temperature-detector) sensor is to include it in a bridge followed by a differential amplifier. The problem is that two nonlinearities—one from the sensor and another from the bridge—affect the transfer function. Some approaches are available that attempt to avoid the problem, but they tend to be bulky and expensive (references 1, 2, and 3). An alternative circuit proposes adding only one extra resistor to the differential amplifier but provides neither design guidelines nor results (Reference 4). This Design Idea fills the gap. Although circuit analysis is somewhat complex, performance is good, and the circuit uses few components.

Besides the platinum RTD, \(R_{supply} \), the circuit features only six precision resistors, an op amp, and a voltage reference (Figure 1). \(R_{supply} \), the extra resistor for the differential amplifier, delivers additional current to the sensor that relates to the temperature you are measuring. With proper design, the circuit can provide good linearity and stability over a wide range of input temperatures. The output voltage, \(V_O \), depends on circuit components in the following way:

\[
V_O = V_{REF} \times \frac{Y_1}{Y_2} \times \frac{R_3(Y_3 + Y_2 - Y_3 - Y_4) - 1}{R_3[Y_1 + Y_3 - R_2 Y_4(Y_0 + Y_1)] + 1},
\]

where \(Y_i = 1/R_i \) and \(i = 0 \) to 4.

For positive temperatures, a second-degree polynomial of the following form can approximate RTD characteristics:

\[
R_3 = R_3(1 + \alpha x \Theta + \beta x \Theta^2),
\]

where \(R_3 \) is sensor resistance at 0°C, \(\alpha \) and \(\beta \) are coefficients, and \(\Theta \) is the measured temperature.

After replacing the second equation in the first and doing some rearrangements, you get:

\[
V_0 = \frac{\Theta - B}{\Theta^2 - B\Theta - C} \times K \times \Theta = f(\Theta)K\Theta,
\]

where \(B \), \(C \), and \(K \) are constants and \(f(\Theta) \) is a function of temperature. Figure 2 shows the general shape of \(f(\Theta) \).

The output voltage depends linearly on temperature when \(f(\Theta) \) is as close as possible to a constant. This situation is most true around the minimum point of \(f(\Theta) \).

Some additional relations provide that the output voltage is 0V at temperature 0°C, the conversion coefficient is 10 mV/°C, the minimum of function \(f(\Theta) \) is in the middle of the measurement span, and
the current through R_w causes negligible self-heating of the sensor.

Figure 3 shows the circuit that meets these requirements. The sensor is a DIN-IEC 751 platinum RTD. Microsoft (www.microsoft.com) Excel software fits 13 points of 0 to 600°C in steps of 50°C from the RTD’s calibration table. The spreadsheet software determined R_w to have a value of 100Ω, α to have a value of 3.908×10^{-3}°C$^{-1}$, and β to have a value of -5.801×10^{-7}°C$^{-2}$ with an R^2 factor of one.

All the circuit’s resistors have tolerances of 0.02%, and the temperature coefficient is 50 ppm/°C. You can use two trimming potentiometers, V_{R1} and V_{R2}, to independently adjust zero and span readings. You should perform span adjustment at 550°C to match the magnitudes of the positive and the negative errors. You can also extend the temperature range to start from $-100°C$ instead of 0°C without exceeding the basic nonlinearity. The three-lead connection to the sensor significantly reduces the influence of connection-cable resistance, R_{cx}, on accuracy.

Table 1 shows the results of evaluating this circuit’s performance with a calibrated, precision-decade resistance and a calibrated, 4.5-digit multimeter with readings at ambient temperatures of 24 and 68°C; power supplies of ±12, ±15, and ±18V; and cable resistances of 0 and 5Ω.EDN

<table>
<thead>
<tr>
<th>TABLE 1 EXPERIMENTAL RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range</td>
</tr>
<tr>
<td>Nominal sensitivity</td>
</tr>
<tr>
<td>Basic accuracy (nonlinearity)</td>
</tr>
<tr>
<td>Ambient-temperature effect</td>
</tr>
<tr>
<td>Power-supply effect</td>
</tr>
<tr>
<td>Cable effect (three-lead connection)</td>
</tr>
<tr>
<td>Power-supply range</td>
</tr>
<tr>
<td>Consumption (600°C input)</td>
</tr>
<tr>
<td>Operating temperature</td>
</tr>
</tbody>
</table>

Figure 3 The full circuit needs trimming potentiometers V_{R1} and V_{R2} to adjust zero and span, respectively, and a three-lead cable for sensor connection. R_c is the cable’s resistance.

Proportional-ac-power controller does out whole cycles of ac line

Richard Rice, Oconomowoc, WI

In industrial and process control, it is often necessary to accurately control the temperature of a process. You control most heating elements using the “bang-bang” method—turning the power to them on and off at a predetermined setpoint. The temperature of the heated substance constantly hunts back and forth around the setpoint. You can achieve much greater temperature precision using proportional power control. With this method, the controller monitors the temperature, proportionally varying the heater power to keep the temperature as close as possible to the setpoint. A PID (proportional-integral-derivative) control loop usually accomplishes this function. Varying the ac power to the heating element in a linear-proportional-manner is neither easy nor simple.

This Design Idea borrows from the delta-sigma-modulator concept. The controller sends cycles of the ac line to the load as the delta-sigma modulator determines. For example, when the input-control voltage is 15% of full-scale, only 15 of 100 ac cycles arrive at the load. Likewise, at 85%, 85 of 100 arrive (Figure 1). The control-voltage-input stage, IC_{1A}, is an inverting amplifier with a gain of negative one. This stage makes the control-voltage range over the positive side of 0V. In this example, the control-voltage input ranges from 0 to 2V full-scale. The control

REFERENCES

This ac controller borrows from a sigma-delta converter to output a number of whole cycles of ac-line power according to an input-control voltage.

The next stage, IC1B, is an integrator. The integrator output ramps either up or down depending on the polarity of the input current. The speed at which it ramps depends on the magnitude of the input current. The integrator is the heart of the delta-sigma modulator. It forces a balance, on the average, between the control-voltage current in R3 and the feedback current in R6. In other words, the duty cycle of the output of IC1A, a CMOS D-type flip-flop, must match the control-voltage percentage of full-scale.

Comparator IC1A detects whether the integrator’s output is positive, thus requiring more feedback current, or negative, thus requiring less feedback to maintain the balance. The output of the comparator switches between 0 and 5V. The flip-flop latches the comparator’s decision on the next rising edge of the 60-Hz clock.

PNP transistor Q1 and optoisolated SCR (silicon-controlled rectifier) IC4 drive load-switching SCR into conduction whenever the flip-flop provides feedback current to the integrator. Indicator LED, lights when the load SCR is on. The secondary of transformer T1 detects the zero crossings of the ac-power line; these crossings provide the 60-Hz clock. The output of comparator IC3 switches high during the positive half-cycles of the ac line and low during the negative half-cycles. Resistor R15 provides a small positive bias, causing the edges of the 60-Hz clock to occur slightly early—which is better than late in this case. If you turn off the SCR too late, its self-latching nature may cause it to stay on for an extra half-cycle when it should have been off.

Both comparators IC2A and IC2B use a small amount of hysteresis to promote fast, clean switching. The remaining components generate the regulated 5 and 5V power supplies. Transformer T1 and optoisolator IC4 provide isolation from the ac-power line.

This Design Idea works well for an application such as a spa-heater control but does not work for light-dimming or motor-speed control because the output power is pulsating in nature. You can easily adapt the design for 240V-ac or 50-Hz operation.

IF YOU TURN OFF THE SCR TOO LATE, ITS SELF-LATCHING NATURE MAY CAUSE IT TO STAY ON FOR AN EXTRA HALF-CYCLE WHEN IT SHOULD HAVE BEEN OFF.
Extend monolithic programmable-resistor-adjustment range with active negative resistance

W Stephen Woodward, Chapel Hill, NC

A variety of solid-state, in-circuit-programmable replacements exist for the traditional electromechanical trimmer potentiometer. These replacements have many obvious advantages, such as automatic adjustability, miniaturization, and immunity to vibration. But these devices, unlike humble mechanical potentiometers, have relatively large minimum programmable resistance. Although you can adjust a typical trimming potentiometer down to a fraction of Ω, solid-state-potentiometer substitutes usually bottom out at 10s, 100s, or even 1000s of ohms. This limitation can sometimes be problematic and frequently precludes use of the solid-state option in some design applications. The Rejustor family of devices, which Microbridge (www.mbridgetech.com) recently introduced, provides an extreme example of this effect. You can program a typical Rejustor over only a narrow span of 30%. For example, you can program a 10-kΩ Rejustor to no lower than 7 kΩ, imposing a serious and obvious obstacle to general-purpose application of these devices. Figure 1 suggests a generally applicable workaround that works not only with Rejustors, but also with all adjustable resistances. It uses an op amp in a negative-resistance topology that, in effect, subtracts the minimum programmable resistance from the total programmed resistance.

![Figure 1](image)

Figure 1 This circuit uses an op amp in a negative-resistance topology that, in effect, subtracts the minimum programmable resistance from the total programmed resistance.

1-Wire network controls remote SPI peripherals

Michael Petersen, Maxim Integrated Products, Colorado Springs, CO

Many 1-Wire-compatible peripherals are available, but, for those that lack the 1-Wire capability, the circuit in Figure 1, pg 80, illustrates one way to implement it. The example controls a remote LED display by the 1-Wire network through an SPI (serial-peripheral-interface)-compatible display controller.

To produce the three-wire SPI that a MAX7221 display controller requires for the CS (chip-select), DIN (serial-data), and CLK (clock) signals, the 1-Wire network serially addresses three DS2405 1-Wire switches. The first switch directly creates CS; the second switch directly creates DIN; and the third switch, aided by three exclusive-OR gates, creates CLK.

The edge detector and one-shot IC4A, IC5B, and IC6C combine the outputs of IC4 and IC5—Data 1 and Data 0—to create a clock signal for the SPI. This one-shot clock-generation circuit improves the data rate by requiring only one 1-Wire transaction per SPI bit, instead of the three transactions—data, clock low, and clock high—that would be necessary if you directly use the IC3 output as a clock signal.

To transmit data to the SPI inputs, first set the output of IC1 low. Then, transmit the data bits using the following rules: If the current data bit differs from the previous bit, set IC2’s Data 1 output accordingly. If the current data bit is the same as the previous bit, toggle IC3’s Data 0 output. The circuit automatically generates a clock pulse each time and requires only one 1-Wire command for each data bit sent. When data transmission is complete, send a final 1-Wire command to set the IC1 output high.

This circuit allows a 1-Wire network to control a remote temperature display, but similar techniques can provide an interface to IC (inter-integrated-circuit)-compatible devices and to other SPI peripherals, such as ADCs and DACs. You can also produce a bidirectional-data capability by adding a fourth DS2405. Note that the SPI data rate and updates to the peripheral are relatively slow, but speed is not an issue for many remote-monitoring applications.
Figure 1 Three 1-Wire switches—IC₁, IC₂, IC₃; three XOR gates, IC₄; and the associated components enable a 1-Wire network to control this display through the SPI peripheral IC₅.