6. We find the force produced by the string by differentiating the potential energy:
\[F = -\frac{dU}{dx} = -\frac{d}{dx}(\frac{1}{2}m(x^2 + x^2))/dx = -(2x + 3\alpha^2). \]
The force exerted by the archer is the reaction to this force:
\[F_{\text{archer}} = 2x + 3\alpha^2, \]
\[F_{\text{string}} = -2x - 3\alpha^2. \]

10. We take \(y = 0 \) at the ground.
 (a) \(U = mgy = (5 \text{ kg})(9.8 \text{ m/s}^2)y = 49y. \)
 (b) \(U = mgy - 10 \text{ m} = 49y - 490. \)
 (c) \(U = mgy - 4 \text{ m} = 49y - 200. \)

20. (a) We choose \(U = 0 \) at \(x = 0 \). From the relation between force and potential energy, \(F = -\frac{dU}{dx} \), we see that a constant force means a constant slope on the potential energy plot. For this force the slope is \(-2.5 \text{ N} \) for negative \(x \) and \(+0.8 \text{ N} \) for positive \(x \).
 (b) At \(x = -0.5 \text{ m} \), the energy is only potential, with a value of \(1.3 \text{ J} \). We show a line at constant energy of \(1.3 \text{ J} \), which intercepts the plot at \(x = 1.6 \text{ m} \). Thus the particle travels \(1.6 \text{ m} \) before stopping momentarily.

24. (a) For the energy \(E_1 \), motion is restricted to
 \(A < x < B, \ C < x < D, \) or \(F < x. \)
 For the energy \(E_2 \), motion is restricted to
 \(G < x. \)
 (b) The particle will remain at rest when \(F = -\frac{dU}{dx} \), which corresponds to \(H, I, J, \) or \(K. \)
 (c) Motion within turning points is possible for \(E < E_y. \)
 The positions will be in the valleys.
 (d) The equilibrium positions are where the slope is zero.
 Those at the bottom of the valleys, \(H \) and \(I, \) are stable; those at the peaks, \(I \) and \(K, \) are unstable.

33. We choose \(y = 0 \) at the release point. If we neglect air resistance, energy is conserved:
\[E = \frac{1}{2}mv_t^2 + mgy_t = \frac{1}{2}mv_o^2 + mgy_o. \]
 (a) The kinetic energy depends on the speed, not the direction:
\[\frac{1}{2}mv_y^2 + 0 = \frac{1}{2}mv_o^2 + mgh, \text{ or } v_y^2 = v_o^2 - 2gh, \text{ which gives } v_y = (v_o^2 - 2gh)^{1/2}. \]
 (b) For vertical motion, the speed at the highest point (where \(h = H \)) is zero:
\[v_y = 0 = (v_o^2 - 2gh)^{1/2}, \text{ which gives } v_o = 2g(H)^{1/2}. \]
 (c) When the ball is thrown at an angle \(\theta, \) the speed at the highest point is \(v_y = v_{y_0} = v_0 \cos \theta. \) Here
\[v_y^2 = v_o^2 - 2gh, \text{ or } v_{y_0}^2 = v_0^2 - 2gH. \]
Because \(v_0^2 = v_{y_0}^2 + v_{y_0}^2, \) we have
\[v_{y_0}^2 = (v_0 \sin \theta)^2 = 2gH. \]
Thus \(v_o = (2gH)^{1/2}/\sin 45^\circ = 2g(H)^{1/2}. \)
40. With $y = 0$ at the bottom of the circle, we call the start point A, the bottom of the circle B, and the top of the circle C. From energy conservation we have

$$K_A + U_A = K_B + U_B = K_C + U_C.$$ (a) For the motion from A to B:

$$mgH + 0 = 0 + \frac{1}{2}mv_B^2,$$ which gives $v_B = \sqrt{2gH}.$

(b) For the motion from A to C:

$$mgH + 0 = mg(2R) + \frac{1}{2}mv_C^2,$$ which gives $v_C = \sqrt{2g(2R)}.$

(c) At the top of the circle we have the forces mg and N, both downward, that provide the centripetal acceleration:

$$mg + N = mv_C^2/R,$$ which gives

$$N = m(v_C^2/R - g) = m[2g(2R)/R - g] = \frac{mg}{R} (2H/R - 5).$$

(d) The minimum value of N is zero; since the track can only push on the car. Thus

$$2H_{min}/R - 5 = 0,$$ which gives $H_{min} = \frac{5R}{2}.$

The speed at C will be

$$v_{C_{min}} = \sqrt{2g[H_{min} - 2R]} = \sqrt{5R}.$$

41. (a) We take the gravitational potential energy to be 0. The spring potential energy depends on the

amount of compression or extension of the spring.

At the position x, the length of the spring is $\sqrt{h^2 + x^2}$. The spring potential energy is

$$U(x) = \frac{1}{2}k\left(\sqrt{h^2 + x^2} - L\right)^2.$$

(b) We find the force produced by the spring by differentiating:

$$F = -\frac{dU}{dx} = -\frac{1}{2}k(x)(h^2 + x^2 - L^2) \frac{2x}{h^2 + x^2} = -k\frac{x}{h^2 + x^2}(h^2 + x^2 - L).$$

42. Because $U(r) = U_0[(r_0/r)^{12} - 2(r_0/r)^6]$ depends only on the separation, we find the force from

$$F_r = -\frac{dU}{dr} = -(12U_0/r_0^{12})(-12r_0^{11} - 12r_0^5(-6/r^7)) = (12U_0/r_0)[(r_0/r)^{13} - (r_0/r)^7].$$

The force will be zero when $(r_0/r)^{13} = (r_0/r)^7$, which gives $(r_0/r)^6 = 1$, or $r = \frac{r_0}{2}$.

At this separation, the potential energy is $U = U_0(1 - 2) = -U_0$.

43. (a) We find the potential energy for the force $F(x) = -ax + bx^2$ from

$$U(x) = U(0) - \int_0^x \left[-ax + bx^2\right] \, dx = U(0) + ax^2 - \frac{bx^3}{3} = 3 + \frac{3x^2}{2} - \frac{0.2x^3}{3},$$ with x in m.
55. (a) Because \(F(x) = ax + bx^3 + cx^4 \) is a one-dimensional force that depends only on position, it is conservative.

(b) To test \(F = Ax^2 \hat{i} + Bxy \hat{j} \), we find the work for a displacement from \((0, 0)\) to \((1, 1)\) for the two paths indicated in the diagram:

\[
W_1 = \int_0^1 F_x \, dx + \int_0^1 F_y \, dy = \int_0^1 Ax^2 \, dx + \int_0^1 Bxy \, dy
\]

\[
= \frac{1}{2} A x^3 \bigg|_0^1 + \frac{1}{4} B x^2 y \bigg|_0^1 = \left(\frac{A}{3} - 0 \right) + \left(\frac{B}{2} - 0 \right) = \frac{A}{3} + \frac{B}{2}
\]

\[
W_II = \int_0^1 F_y \, dy + \int_0^1 F_x \, dx = \int_0^1 Bxy \, dy + \int_0^1 Ax^2 \, dx
\]

\[
= \frac{1}{2} B x^2 y \bigg|_0^1 + \frac{3}{4} A x^3 \bigg|_0^1 = \left(0 - 0 \right) + \left(\frac{A}{3} - 0 \right) = \frac{A}{3}
\]

Because the work depends on the path, the force is not conservative.

60. We choose \(y = 0 \) at the bottom of the loop.

With no friction, energy is conserved.

The initial (and constant) energy is

\[
E_i = m g y_i = \frac{1}{2} m v_i^2
\]

\[
= (0.050 \text{ kg})(9.8 \text{ m/s}^2)(10 \times 10^{-2} \text{ m}) + 0 = 4.9 \times 10^{-2} \text{ J}
\]

(a) \(E_i = 0 + \frac{1}{2} m v_i^2 \)

\[
= \frac{1}{2}(0.050 \text{ kg}) v_i^2 = 4.9 \times 10^{-2} \text{ J}, \quad \text{which gives} \quad v_i = 1.4 \text{ m/s}
\]

\[
E_r = m g y_r = \frac{1}{2} m v_r^2
\]

\[
= (0.050 \text{ kg})(9.8 \text{ m/s}^2)(8 \times 10^{-2} \text{ m}) + \frac{1}{2}(0.050 \text{ kg}) v_i^2
\]

\[
= 4.9 \times 10^{-2} \text{ J}, \quad \text{which gives} \quad v_r = 1.63 \text{ m/s}
\]

\[
E_f = m g y_f = \frac{1}{2} m v_f^2
\]

\[
= (0.050 \text{ kg})(9.8 \text{ m/s}^2)(12 \times 10^{-2} \text{ m}) + \frac{1}{2}(0.050 \text{ kg}) v_i^2 = 4.9 \times 10^{-2} \text{ J}, \quad \text{which gives} \quad v_f^2 < 0.
\]

Thus \(v_r \) is not possible and the particle never reaches point \(d \).

(b) At the highest point the particle has no kinetic energy, so it must have the same potential energy as the initial point: \(y_{\text{max}} = y_f = 0.05 \text{ m} \).

64. We choose \(y = 0 \) at the lowest position. At the top of the swing the tension and the weight must provide the centripetal acceleration;

\[
T + m g = m a_c / h
\]

The tension must pull on the mass, so we have

\[
T = m a_c / (h + g) = 0, \quad \text{or} \quad a_c = -g
\]

Because the tension does not work, we can apply conservation of energy from the release point to the position of the mass directly above the nail:

\[
K_f + U_f = K_i + U_i
\]

\[
0 + m g L = \frac{1}{2} m v_f^2 + m g (2 h), \quad \text{or} \quad v_f^2 = 2 g (L - 2 h)
\]

From the condition on the tension, we have

\[
2 \mu (L - 2 h) \geq g h, \quad \text{which gives} \quad h \leq 2 L / (5 \mu) \geq 0.4 \text{ m}
\]

68. Because the tension in the rope is perpendicular to the motion, it does no work.

(a) From the work-energy theorem we have

\[
W_{\text{net}} = W_f - W_i = \Delta K = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2
\]

\[
W_f = \frac{1}{2}(1.8 \text{ kg})(2.1 \text{ m/s})^2 - \frac{1}{2}(1.8 \text{ kg})(3.5 \text{ m/s})^2 = -7.1 \text{ J}
\]

(b) Friction opposes the tangential motion.

\[
W_f = -\mu m g s = -\mu m g (2 a r)
\]

\[-7.1 = -\mu (1.8 \text{ kg})(9.8 \text{ m/s}^2)2 \pi (0.31 \text{ m})], \quad \text{which gives} \quad \mu = 0.21
\]

(c) If we take the reference level at the table top, \(U = 0 \) at all times, since the table is horizontal.

(d) Because the work done by friction does not depend on the speed, \(W_f = -7.1 \text{ J} \) for each revolution.

If the block stops after \(n \) revolutions, we have

\[
W_{\text{total}} = \Delta K
\]

\[-7.1 n = 0 - \frac{1}{2}(1.8 \text{ kg})(3.5 \text{ m/s})^2, \quad \text{which gives} \quad n = 15 \text{ revolutions}
\]
70. (a)

(b) Normally we would find \(r \) at which \(U = -Ae^{-kx} / r \) is minimum by setting \(dU/dr = 0 \):
\[
dU/dr = -Ae^{-kx} / r^2 + Ak e^{-kx} / r = Ae^{-kx} (1 + kr) / r^2 = 0,
\]
which gives \(r = \infty \), for which \(U \) is maximum (zero). The difficulty is that \(U \) is not defined for \(r < 0 \). From the plot we see that \(U \) is minimum \((-\infty)\) at \(r = 0 \).

(c) \(F(r) = -dU/dr = -Ae^{-kx} (1 + kr) / r^2 \), which is attractive.

(d) \[
\begin{align*}
[F(0.1)] &= Ae^{-0.1(1 + 0.1) / (0.1 \times 10^{-15} m^2 - 1.0 \times 10^3)] A \\
[F(10)] &= Ae^{-10(1 + 10) / (10 \times 10^{-15} m^2 - 5.0 \times 10^3)] A
\end{align*}
\]

75. We choose the coordinate system shown in the diagram, with \(y = 0 \) at the lowest point. Because the tension does no work from the release point to the point where the string is cut, we can use conservation of energy:

\[
K_i + U_i = K_f + U_f;
\]

\[
0 = mgL = \frac{1}{2}mv_0^2 + mgL(1 - \cos \alpha), \text{ which gives } v_0^2 = 2gL \cos \alpha.
\]

When the string is cut, the ball becomes a projectile with initial speed \(v_0 \) at an angle \(\alpha \) with the horizontal.

For the projectile motion, we have:
\[
x = x_0 + v_0 \cos \alpha \cdot t \quad \text{and} \quad y = y_0 + v_0 \sin \alpha \cdot t + \frac{1}{2}(-g)t^2.
\]

When the ball hits the floor, \(y = 0 \):
\[
0 = L(1 - \cos \alpha) + v_0 \sin \alpha \cdot t - \frac{1}{2}gt^2,
\]
from which we can find the time to hit the floor:
\[
t = \left[\frac{(v_0 \sin \alpha)}{g} \right] \left[-1 \pm \left(\frac{v_0 \sin \alpha}{g} \right)^2 + \frac{L}{g}(1 - \cos \alpha)^{1/2} \right].
\]

We take the positive value from the solution to the quadratic equation for \(t \).

The horizontal distance traveled in this time is:
\[
x = L \sin \alpha + v_0 \sin \alpha \cdot t \;
\]

\[
= L \sin \alpha + \left(v_0 \cos \alpha \right) \left(\frac{v_0 \sin \alpha}{g} \right) \sin \alpha + \left(v_0 \cos \alpha \right) \left(\frac{L}{g} \right) \sin \alpha \left(\frac{v_0 \sin \alpha}{g} \right) + (L/g)(1 - \cos \alpha)^{1/2}.
\]

When we use \(v_0^2 = 2gL \cos \alpha \) and \(\sin^2 \alpha = 1 - \cos^2 \alpha \) and do some algebra, we get:
\[
x = L \sin \alpha + 2 \sin \alpha \cos \alpha + 2(\cos^2 \alpha - \cos^2 \alpha)(1/2).
\]