4.55

55

\[R_e = \frac{V_T}{I_e} \cdot \frac{25 \text{ mV}}{0.8 \text{ mA}} \cdot 31.25 \Omega \]

\[\beta = \frac{r_e}{1 - \beta} = \frac{0.99}{0.01} = 99 \]

\[r_T = (\beta + 1) \cdot R_e = 3.125 \text{ k}\Omega \]

4.61

61

(a) Using the voltage divider rule,

\[\frac{V_C}{V_B} = \frac{R_e}{R_e + r_T} \quad \text{Q.E.D.} \]

(b) Node equation at \(B \),

\[i_b = \frac{V_{be}}{r_e} - g_m V_{be} \]

\[\quad = \frac{V_{be}}{r_e} \left(1 - g_m R_e \right) \]

\[\quad = \frac{V_{be}}{r_e} \left(1 - g_m \frac{0}{g_m} \right) \]

\[\quad = \frac{V_{be}}{r_e} \left(1 - \alpha \right) \]

\[\quad = \frac{V_{be}}{r_e} \left(1 - \frac{\beta}{\beta + 1} \right) \]

\[\quad = \frac{V_{be}}{r_e} \frac{1}{\beta + 1} \]
But from voltage-divider rule
\[V_{be} = V_b \frac{R_e}{R_e + R_e} \]

Thus
\[I_b = \frac{1}{(\beta + 1)R_e} \frac{V_b R_e}{R_e + R_e} \]

from which we find
\[R_{in} \equiv \frac{V_b}{I_b} = (\beta + 1)(R_e + R_e) \] Q.E.D.

For \(R_e = 1 \, k\Omega \), \(\beta = 100 \), and \(I_e = 1 \, mA \),
\[V_e = \frac{V_T}{I_e} = \frac{25 \, \text{mV}}{1 \, \text{mA}} = 25 \, \Omega \]

Thus,
\[\frac{V_e}{V_b} = \frac{1000}{1000 + 25} = 0.976 \, \text{V/V} \]
\[R_{in} = (100 + 1)(1000 + 25) \, \Omega \]
\[= 101 \times 1.025 \, k\Omega \]
\[= 103.5 \, k\Omega \]

Refer to Fig. P4.64.

For large \(\beta \), the dc base current will be negligibly small. Thus the dc voltage at the base can be found directly using the voltage-divider rule,
\[V_B = 15 \frac{100}{180 + 100} = 7.5 \, V \]
Assuming \(V_{BE} \approx 0.7 \, V \),
\[V_E = 7.5 - 0.7 = 6.8 \, V \]

Thus,
\[I_E = \frac{6.8 \, V}{6.8 \, k\Omega} = 1 \, mA \]
Thus, using the voltage-divider rule we find the

\[\frac{V_{be}}{V_i} = \frac{R}{R_e + R} \quad \text{Q.E.D.} \]

Also,

\[i_c = \frac{V_b}{R_e + R} = \frac{V_i}{R_e + R} \]

and,

\[V_{a2} = -a \cdot i_c \cdot R_c \]

\[= -a \cdot \frac{R_c V_i}{R_e + R} \]

Thus,

\[\frac{V_{a2}}{V_i} = -a \cdot \frac{R_c}{R_e + R} \quad \text{Q.E.D.} \]

Substituting \(R_e = V_i / I_e = 25 \Omega \), \(R_e = 6.8 \ \Omega \), \(R_c = 4.3 \ \Omega \) and \(a = 1 \) gives

\[\frac{V_{a2}}{V_i} = \frac{6.8}{0.025 + 6.8} = 0.996 \ \text{V/V} \]

\[\frac{V_{a2}}{V_i} = -\frac{4.3}{6.8 + 0.025} = 0.63 \ \text{V/V} \]

Equation of line \(L_1 \):

\[i_C = 5 + \frac{5}{100} V_{CE}, \ \text{mA} \]

\[\therefore i_C = 5 + 0.05 V_{CE} \]
Equation of load line:
\[I_C = \frac{V_{CC} - V_{CE}}{R_C} \]

i.e. \[I_C = 10 - V_{CE} \] (2)

Solving (1) together with (2) yields for the bias point Q:
\[I_C = \frac{5.24 \text{ mA}}{V_{CE} = 4.76 \text{ V}} \]

Now for a signal of 30-\(\mu \text{A} \) peak superimposed on \(I_B = 50 \mu \text{A} \), the operating point moves along the load line between points N and M. To obtain the coordinates of point M, we solve Eq. (2) simultaneously with the equation of line \(L_2 \), which is
\[I_C = 8 + \frac{8}{100} V_{CE} \]
to obtain
\[I_C |_M = 8.15 \text{ V} \]
\[V_{CE} |_M = 1.85 \text{ V} \]

Similarly, the coordinates of point N can be found by solving Eq. (2) simultaneously with the equation for line \(L_3 \),
\[I_C = 2 + \frac{2}{100} V_{CE} \]
to obtain
\[I_C |_N = 2.16 \text{ mA} \]
\[V_{CE} |_N = 7.84 \text{ V} \]

Thus the resulting collector current signal has a positive peak of \(8.15 - 5.24 = 2.91 \text{ mA} \) and a negative peak of \(5.24 - 2.16 = 3.08 \text{ mA} \) for 5.99 mA peak-to-peak. The corresponding collector voltage signal has a positive peak of \(7.84 - 4.76 = 3.08 \text{ V} \) and a negative peak of \(4.76 - 1.85 = 2.91 \text{ V} \), for a peak-to-peak signal of 5.99 V.
Assuming a very large β, $\alpha = 1$, and the base current can be neglected,

$$I_E R_E = \frac{1}{3} V_{CC} = \frac{1}{3} \times 9 = 3 \text{ V}$$

For $I_E = 0.5 \text{ mA}$,

$$R_E = \frac{6}{3} \Omega$$

$$I_C R_C = \frac{1}{3} V_{CC} = 3 \text{ V}$$

For $I_C \approx I_E = 0.5 \text{ mA}$,

$$R_C = \frac{6}{3} \Omega$$

Now for the voltage divider R_1, R_2, if we neglect the base current,

$$\frac{V_{CC}}{R_1 + R_2} = 0.2 \times 0.3 = 0.1 \text{ mA}$$

$$\Rightarrow R_1 + R_2 = 90 \text{ k}\Omega,$$

and to obtain a voltage at the base of $V_E + V_{BE} = 3 + 0.7 = 3.7 \text{ V},$

$$\frac{R_E}{R_1 + R_2} = \frac{3.7}{9}$$

$$\Rightarrow R_2 = \frac{3.7}{9} \times 90 = 37 \text{ k}\Omega$$

Thus, $R_1 = 90 - 37 = 53 \text{ k}\Omega$

Now for a BJT with $\beta = 100$,

$$I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{R_B}{\beta + 1}}$$

where $V_{BB} = 9 \frac{R_2}{R_1 + R_2} = 3.7 \text{ V},$

and $R_B = R_1 // R_2 = \frac{53 \times 37}{218} = 21.8 \text{ k}\Omega$

Thus, $I_E = \frac{3.7 - 0.7}{6 + \frac{21.8}{101}} = 0.48 \text{ mA}$
\[I_E = \frac{V_{BB} - V_{BE}}{R_E + R_B/(\beta + 1)} \]

where
\[V_{BB} = V_{CC} \left(\frac{R_2}{R_1 + R_2} \right) = 9 \left(\frac{15}{27 + 15} \right) = 3.21 \text{ V} \]
\[R_B = R_1 \parallel R_2 = 15 \parallel 27 = 9.64 \text{ k}\Omega \]

Then,
\[I_E = \frac{3.21 - 0.7}{1.2 + \frac{9.64}{101}} = 1.94 \text{ mA} \]

\[G_m = \frac{I_C}{V_T} = \frac{0.49 \times 1.94}{0.025} = 76.8 \text{ mA/V} \]

\[\beta = \frac{V_T}{V_T} = \frac{100}{76.8} = 1.3 \text{ k}\Omega \]
\[\tau = \frac{V_T}{I_C} = \frac{100}{0.49 \times 1.94} = 52.1 \text{ k}\Omega \]

\[R_i = R_B \parallel R_T = 9.64 \parallel 1.3 = 1.15 \text{ k}\Omega \]
\[G_m = -G_m = -76.8 \text{ mA/V} \]
\[R_o = R_C \parallel \tau_0 \]
\[= 2.2 \parallel 52.1 = 2.11 \text{ k}\Omega \]

\[A_V \equiv \frac{V_o}{V_i} = \frac{V_o}{V_i} \]
\[= \frac{R_i}{R_i + R_T} \cdot \frac{G_m}{(R_o \parallel R_T)} \]
\[= -\frac{1.15}{10 + 1.15} \times 76.8 \times (2.11 / 2) \]
\[= -8.13 \text{ V/V} \]

\[A_i \equiv \frac{i_o}{i_i} = \frac{V_o / R_L}{V_T / (R_o + R_i)} \]
\[= \frac{V_o}{U_T} \cdot \frac{R_1 + R_2}{R_L} \]
\[= -8.13 \times \frac{10 + 1.15}{2} \]
\[= -45.3 \text{ A/A} \]
Refer to Fig. P4.78.

\[V_{BB} = 9 \frac{47}{82+47} = 3.28 \text{ V} \]

\[R_B = \frac{47}{182} = 21.88 \text{ k}\Omega \]

\[I_E = \frac{3.28 - 0.7}{3.6 + \frac{25.88}{101}} = 0.66 \text{ mA} \]

\[I_C = 0.99 \times 0.66 = 0.63 \text{ mA} \]

\[g_m = \frac{0.65}{0.025} = 26 \text{ mA/V} \]

\[r_t = \frac{100}{26} = 3.85 \text{ k}\Omega \]

\[r_e = \frac{100}{0.66} = 151.5 \text{ k}\Omega \]

\[A_v = \frac{V_o}{V_i} = \frac{3.41}{10 + 3.41} = 0.31 \]

\[= -10.1 \text{ V/V} \]

which is about 25% higher than in the original design. The improvement is not as large as might have been expected because although \(R_1 \) increases, \(I_m \) decreases by about the same factor. Indeed most of the improvement is due to the increase in \(R_e \) and hence in the effective load resistance.
Refer to Fig P.14.82

(a) \[I_E = \frac{15 - 0.7}{R_E + \frac{R_3}{\beta + 1}} \]

\[1 = \frac{14.3}{R_E + \frac{2.5}{101}} \]

\[\Rightarrow R_E \approx 14.3 \, \Omega \]

(b) \[V_C = 15 - R_C I_C \]
\[5 = 15 - R_C \times 0.19 \times 1 \]
\[\Rightarrow R_C = 10 \, \Omega \]

(c) \[g_m = \frac{I_C}{V_T} \approx \frac{1}{0.025} = 40 \, \text{mA/V} \]

\[r_m = \frac{B}{g_m} = \frac{100}{40} = 2.5 \, \Omega \]

\[r_o = 100 \, \Omega \]

\[A_v = \frac{V_o}{V_S} = \frac{V_T}{V_T} = \frac{V_o}{V_T} \]

\[= \frac{r_m}{R_3 + r_m} \times -g_m (\frac{r_o}{R_C \parallel R_L}) \]
\[= -\frac{2.5}{2.5 + 2.5} \times 40 (100 \parallel 10 \parallel 5) = -64.5 \, \text{V/V} \]

8-8